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The effects of an insoluble surfactant on the motion of a drop or bubble as it is
driven by a pressure gradient through a capillary tube is investigated numerically.
We find that a drop in a straight capillary tube can either approach a steady-state
shape or develop a re-entrant cavity at its rear. For a gas bubble moving through a
constricted capillary tube, we find that snap-off can occur and surfactants enhance
the snap-off process. The effects of the parameters on the dynamics of bubble snap-off
are illustrated and discussed.

1. Introduction
Surface-active impurities are encountered in many industrial applications of multi-

phase flows. In some situations they are added to the process to improve the result,
while in other situations their presence is not positive but they are difficult to remove
from the system. Hence it is important to understand the effects of surfactant on
the dynamics of multi-phase flows. Here we will study the effects of an insoluble
surfactant on the dynamics of a bubble or drop in a constricted capillary tube. In
particular, we are interested in examining the effects of the surfactant on the snap-off
process (Roof 1970) which occurs as a bubble or drop passes through a constriction.

Since interfacial tension forces are very sensitive to the presence of minute amounts
of surface-active impurities, their presence can lead to a significant variation of these
forces along a fluid–fluid interface. The resulting interfacial tension gradients lead to
tangential (Marangoni) stresses which affect the motion of the fluid–fluid interface.
One example of the use of surfactant is in enhanced oil recovery where they are
used as an aid in the formation of foams in porous media. The surfactant will affect
the size of the bubbles being generated in the foam and the stability of a lamella
after the generation of the foam. Another example is motivated by an interest in the
interaction between inhaled droplets and the lung’s thin liquid lining after an aerosol
lands on its surface, e.g. see Grotberg (1994) for a review of this subject.

There has been a considerable number of studies on the transport of bubbles and
drops in capillary tubes without surfactant, e.g. see Olbricht (1996) for a review of
this subject. Fewer studies have been done with the presence of surfactant because
of the increased difficulty of the problem. For the steady translation of a drop in
straight capillary tube, Borhan & Mao (1992) computed the steady solutions of a drop
translating in a straight capillary tube including the effects of an insoluble surfactant.
In a frame of reference moving with the steady velocity of the drop, they found that
the Marangoni stresses oppose surface convection and retard the motion of the drop
as a whole. Assuming that the drop remains spherical, He, Dagan & Maldarelli (1991)



382 T. M. Tsai and M. J. Miksis

studied the influence of surfactant adsorption on the motion of a drop and confirmed
the retarding effect of surfactant on a neutrally buoyant drop. The influence of soluble
surfactant on the steady translation of a finite or semi-infinite bubble in a straight
capillary was investigated by Ginley & Radke (1989), Ratulowski & Chang (1990) and
Park (1992). One of the aims of these works was to estimate the influence of surfactant
on the film thickness between the bubble surface and the tube wall. Ginley & Radke
(1989) assumed that the surfactant concentration in the suspending fluid was uniform
and adsorption was the rate-controlling mechanism of the surfactant transport. They
found that the film thickness between the bubble surface and the tube wall decreases
compared to the surfactant-free case. Ratulowski & Chang (1990) showed that the
film thickness can increase by a maximum factor of 42/3 compared to the surfactant-
free case if the surfactant transport in the thin film is limited by the mass transfer
from the suspending fluid ahead of the bubble. Park (1992) analysed the motion
of a finite bubble, and found that film thickening occurs due to the accumulation
of the surfactant at the trailing end of the bubble only when the bubble length is
larger than a certain critical value. Wassmuth, Laidlaw & Coombe (1993) studied
the effects of soluble surfactant on the two-dimensional motion of a semi-infinite
bubble moving between two parallel plates with and without a constriction. Using a
finite difference method, they solved the Navier–Stokes equations and the convection–
diffusion equation for the surfactant transport in the bulk fluid. However, as these
authors have noted, the two-dimensional parallel plate system lacks the additional
effects of surface minimization which occurs in a cylindrical setting. Namely, when
a drop or bubble is moving through a constriction, its radius at the constriction
is decreasing, and this can be accounted for in terms of circumferential curvature
in the cylindrical coordinate system. Leyrat-Maurin & Barthes-Biesel (1994) studied
the motion of a deformable capsule surrounded by an infinitely thin Mooney–Rivlin
membrane through a hyperbolic constriction. They reported that when the effective
radius of the capsule is large enough, it can plug the constriction under either
constant-flow-rate or constant-pressure-drop conditions. The effects of insoluble and
soluble surfactant on the deformation and breakup of a drop in an extensional flow
have been studied by Stone & Leal (1990), Milliken, Stone & Leal (1993) and Milliken
& Leal (1994).

The case of a three-dimensional bubble or drop with constant surface tension
moving in a straight or constricted capillary tube was recently studied by Tsai &
Miksis (1994, referred to as TM hereafter). Assuming that the fluids were governed
by the Stokes equations and using a boundary integral method, they determined
numerically the dynamics of the drop or bubble as a function of the viscosity ratio
(drop to suspending fluid) λ, capillary number and effective drop radius. The limit
of λ = 0 or λ small is considered to be a bubble while large λ refers to a drop.
Hence, depending on the value of λ, their results are applicable to either a drop or
bubble. They found that in a straight capillary tube, small-capillary-number drops
will approach a steady-state shape while large-capillary-number drops can have a
jet of suspending fluid penetrating into the surface of the drop from the trailing
interface. This result was also consistent with the experimental results of Olbricht &
Kung (1992). For the case of a constriction, they found that when the viscosity ratio
was small the bubble can break into two or more pieces, i.e. snap off. Otherwise the
bubble just passed through the constriction. They also found that there was a finite
range of capillary numbers for which the bubble would snap off. For small capillary
numbers, the bubble just passed through the constriction while at larger capillary
numbers, a thread of fluid at the rear of the bubble is observed as it passes through
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Figure 1. A bubble in a constricted capillary tube.

the constriction. Our aim in this work will be to expand on the work of Tsai &
Miksis (1994) by including the effects of insoluble surfactant on the bubble surface.
We will show how the presence of surfactant can affect the snap-off process and the
dynamics of the bubble.

We note that one of the difficulties in studying these moving boundary problems
arises from the nonlinearities in the boundary conditions on the fluid–fluid interface.
Although the governing equations for the creeping motion are linear, the interface
curvature is a nonlinear function of the coordinates of the drop shape. Furthermore,
the time-dependent fluid–fluid interface is a free surface and has to be determined as
part of the solution with the velocity and pressure fields, together with the surfactant
distribution on the free surface. It has been shown that the boundary integral method
is effective solving these problems numerically and it will be used here.

We begin with a formulation of the equations of motion in §2. Then in §3 we
describe the numerical method used to compute the time-dependent drop evolution
and the surfactant transport along the bubble surface. The dynamics of a bubble in
both a straight and constricted capillary tube will be discussed in §4.

2. Formulation

Consider a neutrally buoyant Newtonian drop of undeformed radius a0 and vis-
cosity λµ, suspended in a straight or constricted circular capillary tube, filled with a
second immiscible Newtonian fluid of viscosity µ. Both fluids are incompressible and
the whole suspension is driven by an imposed pressure gradient such that the volume
flux remains constant. At the fluid–fluid interface, the interfacial tension γ may vary
with time and position along the interface owing to the presence of an adsorbed
surface-active material. The surfactant is assumed to be insoluble in both the drop
fluid and the suspending fluid so that convection and diffusion of surfactant in the
bulk phases may be neglected. When the Reynolds numbers are small in both fluids
so that the inertia terms can be neglected, the motions in both fluids are governed
by the Stokes equations. Using the cylindrical coordinate system shown in figure 1,
the governing equations in the suspending fluid Ω are the conservation of mass and
momentum

∇ · v = 0, (2.1a)

µ∇2v = ∇P , (2.1b)
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for x ∈ Ω, where v is the velocity and P is the pressure in the suspending fluid.
Similarly, in the drop Ωd, we have

∇ · vd = 0, (2.2a)

λµ∇2vd = ∇Pd, (2.2b)

where vd and Pd denote the velocity and pressure fields in the drop fluid, respectively.
The boundary condition for the velocities along the tube wall satisfies the no-slip

condition

v = 0. (2.3)

Along the fluid–fluid interface Γ , the boundary conditions are the continuity of
velocity

v = vd, (2.4)

the stress condition

σ(v) · n− σ(vd) · n = γ(∇s · n)n− ∇sγ, (2.5)

and the kinematic condition
∂Y

∂t
· n = v · n. (2.6)

In these equations, σ(v) = −P I+µ(∇v+(∇v)T ) and σ(vd) = −PdI+λµ(∇vd+(∇vd)T ) are
the stress tensors for the suspending and the drop fluids, respectively; ∇s denotes the
surface gradient, n is the unit normal vector pointed away from Ω, ∇s · n is the mean
curvature of the fluid–fluid interface, γ(C̃) is the interfacial tension which depends on
the surfactant concentration C̃ , and Y is the position vector of Γ . Furthermore, due
to the presence of surfactant on the fluid–fluid interface, its distribution along the
interface has to be coupled with the above boundary conditions on Γ . The changes
in surfactant concentration at a phase interface are governed by a time-dependent
convective–diffusion equation, which can be written as

∂C̃

∂t
+ ∇s · (C̃vs) + (∇s · n)(v · n)C̃ = Ds∇s2C̃, (2.7)

see Aris (1962) and more recently Stone (1990) for the derivation of equation (2.7),
where Ds is the surface diffusivity and vs represents the velocity vector tangent to the
interface (vs = (I − nn) · v).

Finally, the velocity of the suspending fluid should approach Poiseuille flow when
it is sufficiently far away from the drop and the constriction:

v =
2Q

πR4
0

(R2
0 − r2)ez as |z| → ∞. (2.8)

Here Q is the constant volume flux of the whole suspension, ez is the unit vector along
the axial direction, and r is the radial distance measured from the tube centreline.

In order to complete the formulation, an equation of state which relates the
interfacial tension and the surfactant concentration must be described. Here we use
a linear equation of state

γs − γ = C̃RT , (2.9)

where γs is the interfacial tension of a clean interface (i.e. C̃ = 0), R is the gas constant
and T is the absolute temperature. The surfactant concentration C̃ is specified in
units of mass of surfactant per unit of interfacial surface area. This simple equation
of state is valid for a dilute surfactant concentration and has been used by other
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researchers in studying the effects of surfactant on the deformation of drops, e.g.
Stone & Leal (1990). As the surfactant concentration increases, a nonlinear equation
would be more appropriate, e.g. a Frumkin model, but these require the specification
of additional parameters. Hence for simplicity we will use the linear equation (2.9)
here.

To non-dimensionalize the governing equations and boundary conditions, we choose
the radius at the straight section of the capillary tube, R0, as the length scale; the
surfactant concentration is scaled by the uniform concentration C0, which exists on
the fluid–fluid interface in the absence of flow; the velocity is scaled by V , where
V = Q/πR2

0 represents the average velocity of the suspending fluid; the pressure
is scaled by µQ/πR3

0 and the time is scaled by πR3
0/Q. The governing equations in

dimensionless form become

∇ · v = 0, (2.10a)

∇2v = ∇P , (2.10b)

for x ∈ Ω. While in the drop, x ∈ Ωd,

∇ · vd = 0, (2.11a)

λ∇2vd = ∇Pd. (2.11b)

The dimensionless boundary conditions along the tube wall become

v = 0 at r = w(z) for −∞ < z < ∞ (2.12)

where w(z) describes the shape of the capillary tube wall. At the fluid–fluid interface
Γ , the boundary conditions are

v = vd, (2.13)

σ(v) · n− σ(vd) · n =
1

Ca
(1− βC)(∇s · n)n+

β

Ca
∇sC, (2.14)

∂Y

∂t
· n = v · n. (2.15)

The convective–diffusion equation for the surfactant concentration becomes

∂C

∂t
+ ∇s · (Cvs) + (∇s · n)(v · n)C −

1

Pe
∇2
sC = 0. (2.16)

Finally

v = 2(1− r2)ez for |z| → ∞, 0 6 r 6 1 (2.17)

at the upstream and downstream boundaries. Here we have introduced the dimen-
sionless parameters

Ca =
µQ

πR2
0γs
, β =

C0RT

γs
, and Pe =

R0V

Ds
.

Ca is the capillary number based on the interfacial tension of a clean fluid–fluid
interface, β is a physicochemical parameter that determines the sensitivity of the
interfacial tension to changes in surfactant concentration, and Pe is the surface Péclet
number. The capillary number is the appropriate dimensionless measure of viscous
forces relative to interfacial tension forces. The surface Péclet number is a measure
of relative importance of convection to diffusion. In addition to these parameters, we
have two more physical parameters in the formulation: the effective radius of the
drop a = a0/R0 and the viscosity ratio λ.
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As noted by Stone & Leal (1990), the dimensional interfacial tension in the presence
of a (non-dimensional) surfactant concentration becomes

γ = γs(1− βC). (2.18)

Hence in the absence of flow, a uniform surfactant concentration, C = 1, decreases
the interfacial tension to γ = γs(1 − β). This shows that β is bounded by 0 6 β 6 1.
Furthermore, this suggests an appropriate scale for the capillary number, which is
based upon the equilibrium interfacial tension γs(1 − β). Therefore, we define the
normalized capillary number as Ca∗ = Ca/(1− β). This is the capillary number
based upon the equilibrium interfacial tension due to the uniform concentration of
surfactant in the absence of flow. Thus Ca∗ is the appropriate parameter for the study
of the deformation of a drop due to surfactant variations by the imposing flow fields.

The shape of the capillary tube wall is specified by the function w(z), where

w(z) = 1− d(1 + cos(πz/l)) for − l < z < l
w(z) = 1 otherwise.

}
(2.19)

Note that the centre of the constriction is located at the origin and we have introduced
two geometrical parameters for the constriction shape, 2d and 2l, which determine its
depth and length, respectively.

Starting with an initially spherical bubble with a uniform surfactant concentration,
our goal is to solve equations (2.10)–(2.11) subject to the boundary conditions (2.12)–
(2.17). Although analytical solutions for this free boundary problem coupled with the
surfactant transport equation are difficult to obtain in general, numerical methods
which utilize the boundary integral method are an effective way of solving this set of
problems. In the next section, we outline the numerical procedure used to determine
the time-dependent solutions for the surfactant concentrations on the deforming
surface of the bubble or drop as it travels in a straight or constricted capillary tube.

3. Numerical method
In this section, we discuss the numerical procedure to solve this coupled free-

boundary and surfactant transport problem. The boundary integral equations for a
clean fluid–fluid interface, where the interfacial tension is assumed to be constant, are
given in TM. When surfactant is present at the interface, we can write the following
boundary integral equations for the surface velocities and tractions assuming a linear
equation of state (2.18):

(1+λ)Ckivi(x)+(1−λ)
∫
Γ

Tik(x, y)vi(y)dΓ+

∫
Γw

Tik(x, y)vi(y)dΓw

−
∫
Γw

Uik(x, y)ti(v(y))dΓw =

∫
Γ

Uik(x, y)

[
1− βC
Ca

(∇ · n)ni(y) +
β

Ca
∇C
]

dΓ , (3.1)

for x ∈ Γ , and

Ckivi(x) + (1− λ)
∫
Γ

Tik(x, y)vi(y)dΓ +

∫
Γw

Tik(x, y)vi(y)dΓw

−
∫
Γw

Uik(x, y)ti(v(y))dΓw =

∫
Γ

Uik(x, y)

[
1− βC
Ca

(∇ · n)ni(y) +
β

Ca
∇C
]

dΓ , (3.2)
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for x ∈ Γw . In these equations, Cki is the principal value tensor, which depends on
the smoothness of the boundary and can be found in Martinez & Udell (1990), y
is the integration variable, n is the unit normal vector pointed away from Ω, and
ti(v(y)) = σiknk is the tractions. The boundary Γw includes the capillary wall plus an
upstream and downstream computational boundary taken far away from the drop
and the constriction. The kernels of the integral equations are known functions of
position given by

Uik(x, y) =
−1

8π

{
δik

| x− y | +
(xi − yi)(xk − yk)
| x− y |3

}
,

and

Tik(x, y) =
−3

4π

(xi − yi)(xj − yj)(xk − yk)
| x− y |5 nj(y).

Assuming the motion is axisymmetric, the surface integrals in the above equations
can be reduced to line integrals along the generating curve of the boundary by
performing the azimuthal integrations analytically. The convective–diffusion equation
can be written as

∂C

∂t
+

1

r[(∂r/∂s)2 + (∂z/∂s)2]1/2

{
∂

∂s
(Crvs)−

1

Pe

∂

∂s

[
r

[(∂r/∂s)2 + (∂z/∂s)2]1/2

∂C

∂s

]}
+ C(∇ · n)(v · n) = 0, (3.3)

where the drop surface is parameterized using a surface coordinate (s, θ), θ is the
azimuthal angle (0 6 θ 6 2π) and s is the arclength coordinate measured from the
front of the drop. Since the interface is deforming, the total arclength L(t) is time-
dependent. The velocity tangent to the surface vs can be calculated once the boundary
integral equations are solved, vs = v · t where t is the unit tangent vector on the drop
surface.

The axisymmetric version of the boundary integral equations (3.1)–(3.2) and the
convective–diffusion equation (3.3) are discretized and solved numerically using the
boundary integral method described in TM in conjunction with an implicit backward
Euler scheme for the surfactant transport on the drop surface. The numerical method
parallels the method used by Stone & Leal (1990). The surfactant concentration C
is discretized using the same boundary nodes that describe the drop surface and
is assumed to vary quadratically between nodal points. The boundary conditions
imposed for equation (3.3) are ∂C/∂s = 0 at s = 0 and s = L(t). The resulting
tridiagonal linear system of equations is solved using the lapack routine dgtsv with
double precision.

We summarize the numerical algorithm for solving the transient motion of a drop
in a capillary tube with surfactant transport on a deforming drop surface as follows:

(a) For a given drop shape and surfactant concentration at time t, compute the
interfacial velocity field from equations (3.1) and (3.2), and update the drop shape to
time t+ ∆t using equation (2.15) with a second-order Runge–Kutta scheme.

(b) Using the drop shape at time t + ∆t and the interfacial velocity field obtained
from the last step of the second-order Runge–Kutta scheme in (a), update the
surfactant concentration from time t to t+ ∆t using equation (3.3).

(c) Redistribute the nodal points along the drop shape at time t + ∆t in terms of
an equally spaced arclength coordinate and interpolate the surfactant concentration
at the new nodal points.

(d) Return to step (a).
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Boundary conditions far away from the drop and the constriction require that the
fluid velocity approaches the Poiseuille velocity profile. To achieve this numerically,
we impose a Poiseuille flow at the downstream boundary, while at the upstream
boundary we set the radial component of the flow and the normal stress to zero. For
additional details, see Tsai (1994).

A spherical drop with uniform surfactant concentration (C = 1) is used to initiate
this procedure. In order to have a fixed computational domain for the translation
of the drop in a straight capillary tube, the computations are carried out with the
nose of the drop placed at the origin. Thus, at the end of each iteration, the drop
shape is shifted backward uniformly by an amount equal to the axial displacement
of the nose. For the case of a constricted capillary tube, the nose of the bubble is
placed at z = −(l + 0.1) at time t = 0 on the upstream side of the constriction, and
the computations are terminated when snap-off occurs. Snap-off is defined to be the
instant in time when the minimum radial coordinate of the boundary nodes on the
bubble surface in the neighbourhood of the constriction is less than 0.02, and this
point will be called the snap-off point. The predicted snap-off time τ is defined to be
the difference between the two instants in time when the nose of the bubble passes
the centre of the constriction and the time when the snap-off criterion is satisfied.
Assuming that the bubble breaks at the snap-off point, the effective radius of the
bubble generated, br , is computed by using a flat trailing interface which connects
the snap-off point to the axial axis. The effective radius br is defined to be the radius
of a spherical bubble with the same volume as the bubble being generated at the
downstream side of the constriction.

The convergence of the numerical scheme described above is illustrated by simul-
taneously doubling the number of boundary nodes and halving the time step ∆t
of the numerical integration in (2.15) while keeping the ratio of ∆s and ∆t fixed.
Here ∆s denotes the arclength between two successive grid points along the drop
surface. On doing this, the numerical results show convergent bubble shapes and sur-
factant concentration throughout the time evolution up to the occurrence of bubble
snap-off when the computations are terminated. Since the fluids are incompressible
and the surfactant is assumed to be insoluble, the volume of the bubble and the
total amount of surfactant should remain constant throughout the time evolution.
Hence, it is convenient to monitor these two quantities as a check of the accuracy of
the numerical scheme. It is found that in order to capture the snap-off phenomena
accurately, a minimum number of boundary nodes on the bubble surface, depending
on the value of the dimensionless parameters, is needed. For example, starting from
11 nodes on the upstream and downstream computational boundaries, located at the
axial coordinates −6 and 6, together with 81 nodes along the tube wall, and 61 nodes
on the bubble surface, with the corresponding time step ∆t = 0.002, we find that for
a bubble of a = 0.9 and λ = 10−3, and for the dimensionless parameters Ca∗ = 0.1,
β = 0.5, and Pe = 1, the computations performed up to the instant of bubble snap-off,
t = 0.492, have lost 9.19% of bubble volume. Doubling the number of nodes gives
at t = 0.492 a 2.40% decrease of bubble volume while doubling again gives a 0.71%
decrease. Correspondingly, the percent change in the total amount of surfactant at
time t = 0.492 decreases from 0.596%, to 0.189%, and then to 0.069%. The pressure
jump across the capillary tube has a maximum and a minimum as a function of time
during the passage of the bubble through the constriction up to t = 0.492 and the
corresponding values for these are 337.7, 327.7, 326.1, for the maximum, and 195.3,
177.5, 173.6, for the minimum, as the meshes are refined. These results imply ap-
proximately second-order convergence for the numerical algorithm described above.
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During the evolution of the bubble, the upstream and downstream computational
boundaries are taken at least R0 units away from the bubble and constriction. We
have also checked that increasing the size of the upstream and downstream compu-
tational boundaries has no discernible effects on our results. Unless otherwise noted,
the error in bubble volume is less than 1.5% from its initial volume, and the error in
total surfactant concentration is less than 1% from the total surfactant concentration
at time t = 0. Hence, we are confident that the numerical results presented here are
all within graphical accuracy.

4. Results and discussion
Our numerical results are presented in this section. First we consider the effects of

surfactant on the motion of a drop in a straight capillary tube. Then the effects of
surfactant on the dynamics of a bubble in a constricted capillary tube are considered.
The initial drop shape for all of the computations presented in this section is a sphere
with effective radius a = 0.9, and with a uniform surfactant concentration of C = 1.
We should note that in TM, the dynamics of drops with constant interfacial tension
at larger values of a were found to be similar to the case of a = 0.9. We also note
once again that the computations presented here use the linear equation of state (2.9)
and hence the results may differ from predictions using a nonlinear equation of state.

4.1. Straight capillary

In their study on the dynamics of a drop with constant interfacial tension in a
straight capillary tube, TM showed that for small values of the capillary number Ca,
steady-state drop shapes exist. But as its value increased, a critical value of Ca is
reached at which the steady-state drop profiles no longer exist. In particular, they
presented solutions for which a jet of suspending fluid penetrated into the surface
of the drop from the trailing interface. In the presence of surfactant, we find that
the motion of a drop can be similarly described if we use the normalized capillary
number, Ca∗, instead of Ca. As we will show, for small values of Ca∗ the drops will
approach steady-state shapes, but the dynamics becomes more complicated at larger
values of Ca∗. In our computations, we say that a drop in a straight capillary tube
has reached its steady-state shape when the computed axial velocities at the front
and rear poles of the drop are within 1% of each other. Only the λ = 0.1 case will
be studied here. As shown in TM, similar behaviour was found for smaller values of
λ.

In figure 2 we present computed steady-state solutions for Ca = 0.1, Pe = 1 and
β = 0.1, 0.2, 0.5, 0.75. The corresponding values of Ca∗ are 0.111, 0.125, 0.2 and 0.4,
respectively. Figure 2(a) shows the computed steady-state drop profiles plotted with
their noses located at z = 0. We can see that as β increases, the steady-state drop
profiles elongate in the axial direction and decrease in radius in the radial direction.
Hence, as β increases, the curvature at the front of the drop increases while the
trailing interface initially flattens but then eventually, for large enough β, a re-entrant
cavity at the trailing interface appears. In TM a similar phenomenon occurred with
increasing capillary number. Additional insight can be obtained by examining the
steady-state surfactant concentration, C , on the drop surfaces, shown in figure 2(b),
and the corresponding interfacial tension, γ/γs, shown in figure 2(c). These dependent
variables are plotted as a function of z. For the case of β = 0.75, we see that the
surfactant concentrations are nearly uniform along the rear interface of the drop. The
degree of drop deformation is directly related to the interfacial tension forces on its
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Figure 2. (a) Steady drop shape, (b) surfactant concentration and (c) interfacial tension forces
γ/γs, for Ca = 0.1, Pe = 1, and β = 0.1, 0.2, 0.5, and 0.75.
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surface. In figure 2(c), we find that the interfacial tension on the drop surface decreases
with increasing β, therefore requiring an increased deformation of the drop shape
in the neighbourhood of the wing tips with increasing β. Similar steady-state drop
shapes for other values of the dimensionless parameters were obtained by Borhan &
Mao (1992).

For the case of β = 0.75, we should note that the change in the total amount
of surfactant was around 5.5% when the steady-state criterion was satisfied. The
increase of error in this case is associated with a large variation of curvature at the
tip of the cavity on the rear interface of the drop. Because of the development of
this large curvature, the spatial derivative of the surface velocity field also increases
in magnitude in order to satisfy the stress boundary condition (2.14), which, in turn,
results in the formation of a spike in ∂2C/∂s2 at the tip of the cavity. Increasing
the number of boundary nodes on the drop surface makes the drop shape smoother
and the spike in ∂2C/∂s2 more localized. Hence, the surfactant concentration profile
for this case has a large gradient in its derivative at the tip of the cavity due to the
development of a large curvature.

As the value of Ca∗ increases, the drop undergoes a larger deformation owing to the
increase of viscous forces. The results of our computations indicate that a steady-state
drop shape may no longer exist for large enough Ca∗ due to the coupled effects of the
accumulation of surfactant and the development of a re-entrant cavity at the trailing
interface. In figure 3, we set Ca∗ = 1, β = 0.5, and Pe = 0.1, 1, 10, and plot the drop
shapes at time t = 0.8 in figure 3(a), and the corresponding surfactant concentration
on the drop surface in figure 3(b). In figure 3(a), we also plot the drop shape at time
t = 0.8 where a uniform surfactant concentration is maintained on the drop surface
(Ca = 1, β = 0). It should be noted that in figure 3(b), the surfactant concentration
is plotted as a function of arclength s along the drop surface, where s = 0 denotes
the nose of the drop (see figure 1). When the Péclet number increases the effects
of surface convection increase and we find that this leads to large variations in the
surfactant concentration. In particular, as shown in figure 3(b), the accumulation of
surfactant on the rear interface increases with increasing Péclet number. Therefore
the surface tension decreases in the neighbourhood of the wing tips and an increased
deformation occurs in order to satisfy the normal stress balance. Also the surface
gradient of C increases at the wing tips so by (2.14) the jump in the tangential stress
must also increase there. Both of these lead to the increase in the extent of penetration
of the re-entrant cavity at the rear interface. In figure 3(c) we plot the tangential
surface velocity for the drops of figure 3(a). Note the similarity in all of the curves. In
particular, we find very little difference in the drop shapes near the nose but there is
an increase of the tangential velocity with increasing Péclet number at the rear pole.
In the neighbourhood of the wing tips, we find only small variations of the tangential
velocity yet a larger value of concentration as Péclet number increases.

If time were allowed to increase, the uniform-surfactant case would have a jet of
suspending fluid enter from the trailing interface of the drop and this eventually
leads to drop breakup (see TM). When surfactant is present, we find with increasing
time that there is accumulation of surfactant and increasing curvature and velocity
gradients at the tip of the re-entrant cavity which leads to increased penetration of
the re-entrant cavity. These effects make it difficult for the numerical computation
to resolve the drop motion accurately for large time. But the results imply that the
small-Pe cases should parallel the unsteady motion of the uniform-surfactant case
but the larger-Pe cases contain additional dynamics beyond what we can accurately
capture with our numerical method.
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4.2. Constricted capillary

The effects of surfactants on the dynamics of bubble snap-off in a constricted capillary
tube are now considered. It was shown in TM that for a given constriction shape,
bubble snap-off occurs for a clean bubble surface (or a uniformly contaminated
surface without surfactant transport) when the viscosity ratio λ is small. In addition,
we also showed in TM that the effects of changing the effective bubble radius and
the initial bubble shape result in only quantitative but not qualitative differences in
the overall dynamics. So we will only use bubbles with the effective radius a = 0.9
and λ = 10−3 in the numerical computations to demonstrate the effects of non-
uniform surfactant concentration on the dynamics of bubble snap-off. The shape of
the constriction is specified by setting d = 0.3 and l = 1.
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In order to give us a better understanding of the effect of surfactant, in figure
4 we plot the bubble shape and the tangential velocity along the surface for a
clean bubble, i.e. Ca = Ca∗ = 0.1 and β = 0. The dimensionless times for the
plots in figure 4 correspond to t = 0, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.854. The
snap-off time is τ = 0.563, while the effective radius is br = 0.7193. From figure
4(b) we see that the magnitude of the tangential velocity initially increases in the
neighbourhood of the bubble nose as the bubble enters the constriction. Then as
the bubble starts to come out of the constriction and expand, the magnitude of
the tangential velocity remains relatively uniform in the neighbourhood of the nose
but increases in the neighbourhood of the snap-off point. Hence if surfactant were
present, an accumulation of surfactant would be expected at the snap-off point.

The variation of the surfactant concentration on the bubble surface is strongly
influenced by the magnitude of the Péclet number, the dimensionless measure of
the relative importance of surface convection to surface diffusion. As Péclet number
increases, the surface convection becomes dominant and we could expect a large
variation in the surfactant concentration. Here we will examine the bubble shapes
and the corresponding surfactant concentration on the bubble surface for different
values of the Péclet number. In figures 5 to 7, we plot the bubble shapes, the
corresponding surfactant concentration and the tangential surface velocities as a
function of arclength s for the evolution of an initially spherical bubble moving past
a constriction and snapping off a smaller bubble, for the dimensionless parameter
Ca∗ = 0.1, β = 0.5, and Pe = 0.1, 1, 100, respectively. The dimensionless times chosen
for the plots in figure 5 correspond to t = 0.15, 0.25, 0.3, 0.35, 0.4, 0.6175 for Pe = 0.1.
The snap-off time is τ = 0.318 and the effective radius br = 0.5619. The dimensionless
times chosen for the plots in figure 6 correspond to t = 0.15, 0.25, 0.3, 0.35, 0.4, 0.502
for Pe = 1, and in this case τ = 0.2165 and br = 0.4584. The dimensionless times
chosen for the plots in figure 7 correspond to t = 0.15, 0.25, 0.3, 0.35, 0.4, 0.4335 for
Pe = 100, and in this case τ = 0.1765 and br = 0.3897. Clearly as Péclet number
is increased, the snap-off time and effective radius decrease. In addition we see
that surfactant concentration increases in the neighbourhood of the snap-off point
with increasing Pe. When Pe = 0.1, surface diffusion is the dominant mechanism
for the surfactant transport and we find that the surfactant concentration is fairly
uniform for each bubble shape until the front of the bubble reaches the centre of the
constriction. As the front of the bubble passes the centre of the constriction and enters
the diverging section, the surfactant concentration at the front of the bubble starts
decreasing owing to the increase in the interfacial surface area at the bubble front as
it expands. Although the variations in the surfactant concentration in this case are
minimal (compared to large values of Pe), nonetheless the presence of non-uniform
surfactant concentration has accelerated the snap-off process in comparison to the
case where a uniform surfactant concentration is maintained on the bubble surface
throughout the bubble evolution. As Péclet number increases we find large variations
in the surfactant concentration on the bubble surface. We also see in figures 5–7 that
the value of C increases at the nose, as t increases up to 0.25, and then decreases.
This local maximum of C increases with Pe. The initial increase in C at the front of
the bubble follows because as the front of the bubble enters the converging section
of the constriction, surfactant accumulates at the front of the bubble due to the
converging flow fields as a result of the wall geometry. The amount of surfactant
that accumulates at the front of the bubble increases with increasing Péclet number
since as Pe increases the effects of convection in (2.14) increase. Note from figures
4(b), 5(c), 6(c), and 7(c) that near the snap-off point all the surface velocity plots
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Figure 5. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration, and (c) tangential surface velocity, for Ca∗ = 0.1, β = 0.5, and
Pe = 0.1, at times 0.15, 0.25, 0.3, 0.35, 0.4, and 0.6175.
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Figure 6. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration and (c) tangential surface velocity, for Ca∗ = 0.1, β = 0.5, and Pe = 1,
at times 0.15, 0.25, 0.3, 0.35, 0.4, and 0.502.
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are similar except for the fact that they occur earlier in time as Pe increases. Also
note that the interfacial tension gradients resulting from the non-uniform surfactant
concentration increase more rapidly in time with increasing Péclet number.

So why do the snap-off time and br decrease when surfactants are present? Putting
together all of the above observations the following set of steps seems to take place.
First we find that as a result of the initial increase in C , the local interfacial tension
forces at the front of the bubble decrease requiring increased deformations (increased
curvatures) to satisfy the normal stress balance. Hence the radius of the initial jet
of liquid from the bubble passing through the constriction is less since the larger
curvature of the nose allows for a narrower jet. The narrower jet moves faster
through the constriction since it is further away from the walls. Once the front of the
bubble reaches the diverging section of the constriction, the bubble starts expanding
out of the constriction and the amount of surfactant at the front of the bubble starts
decreasing due to the increase in the interfacial surface area as the bubble expands.
This triggers the snap-off process. Since this all occurs faster than for a clean bubble,
the snap-off time is less.

So why do the snap-off time and br decrease with increasing Pe? This is consistent
with the fact that with increasing Pe the initial increase in C at the bubble nose also
increases allowing for a larger curvature at the bubble nose. Hence the initial jet of
liquid from the bubble moves quicker through the constriction but with a narrower
radius so less fluid passes through the constriction before we start to see the front
expand and hence the snap-off time decreases with increasing Pe. For Pe = 100, it
is also interesting to note that the snap-off point is shifted further downstream from
the centre of the constriction compared to the case when the Péclet number is 0.1
and 1.

In figures 8(a) and 8(b), we plot the snap-off time and the effective radius br
as a function of Péclet number for Ca∗ = 0.05, β = 0.7; Ca∗ = 0.1, β = 0.5; and
Ca∗ = 0.15, β = 0.3. For the case of Ca∗ = 0.05 and β = 0.7, when the Péclet number
is small, e.g. Pe = 0.01, surface diffusion renders the surfactant concentration profile
almost uniform; the surfactant concentration on the bubble surface is slightly less
than the initial concentration (C = 1) due to the increase in the surface area as
the bubble deforms. Therefore the bubble passes through the constriction without
snapping off and attains a steady-state shape downstream of the constriction. This is
consistent with the results reported in TM. For the case of Ca∗ = 0.15 and β = 0.3,
when the Péclet number is large, e.g. Pe = 100, no bubble snap-off was observed up to
time t = 1.25. This is significantly larger than the total evolution time for the case of
Pe = 10, where we observe bubble snap-off at time t = 0.463. In addition, we should
note that for the case of Pe = 100, the change in the total amount of surfactant was
about 5.6% at time t = 1.25. This increase in the total amount of surfactant is similar
to what had been noted earlier in the straight tube case, i.e. the coupled effects of
the development of large curvature and the accumulation of surfactant on the bubble
surface. For this case, we observe that surfactant accumulates at two locations on the
bubble surface. As the front of the bubble expands out of the diverging section of
the constriction, surfactant accumulates at the end of the expanding front interface
near the minimum bubble radius and also near the rear interface, which is still on the
upstream region of the constriction. Hence there is an increase in curvature at these
locations on the bubble surface. The amount of surfactant that accumulates near the
rear interface is larger than the amount of surfactant that accumulates at the end
of the expanding front. As time increases further, the accumulation of surfactant at
the rear interface keeps increasing, hence the interfacial tension forces on the rear
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Figure 7. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration and (c) tangential surface velocity, for Ca∗ = 0.1, β = 0.5, and
Pe = 100, at times 0.15, 0.25, 0.3, 0.35, 0.4, and 0.4335.
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for Ca∗ = 0.05, β = 0.7; Ca∗ = 0.1, β = 0.5; and Ca∗ = 0.15, β = 0.3.

interface become very small, which, in turn, requires increased curvature to satisfy the
normal stress balance.

The pressure jump across the capillary tube gives important information on the
behavior of a bubble through a constriction. In particular it can be measured ex-
perimentally. In figure 9, we plot the pressure jump for the three Péclet numbers
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Figure 9. Pressure jump across the constricted capillary tube from z = −6 to z = 6 as a function
of time for Ca∗ = 0.1, β = 0.5, and Pe = 0.1, 1, 100; and Ca∗ = 0.1, β = 0.

considered in figures 5 to 7, together with the pressure jump for the case of β = 0,
as a function of time t. Here we define the pressure jump as the difference between
the upstream and downstream pressure. Since the computational domain is finite, we
have taken this to be the change in the pressure from z = −6 to z = 6. As shown in
figure 9, the pressure jump increases as the front of the bubble enters the converging
section of the constriction, it then decreases sharply as the bubble expands out of the
constriction and reaches a minimum value just before bubble snap-off occurs. Finally,
the pressure jump rises abruptly as the bubble is snapping off. This behaviour of the
pressure jump across the constricted capillary tube is typical for the other values of
the dimensionless parameter studied.

We now consider the effects of varying β while keeping the Péclet number and Ca∗

fixed. In order to discuss the effects of varying β, it is important to remember that the
physiochemical parameter β is a measure of sensitivity of the interfacial tension to
the surfactant concentration. For a fixed surfactant distribution, increasing the value
of β also increases the interfacial tension gradient. In figure 10 we plot the snap-off
time and the effective radius br as a function of β for Ca∗ = 0.1 and Pe = 0.1, 1,
and 100. We see that in general, τ and br decrease with β. In figures 11 and 12,
we show the bubble evolution up to the occurrence of snap-off, the corresponding
surfactant concentration on the bubble surface and the tangential surface velocity for
Ca∗ = 0.1, Pe = 1, and β = 0.1, 0.7, respectively (the case β = 0.5 is shown in figure
6). We find that the surfactant concentration shows increased variations as the value
of β decreases. It should be noted that although the parameter Ca∗ is held fixed in
these figures, it is also implicitly dependent on β and requires that Ca decrease with
increasing β.

As pointed out by Borhan & Mao (1992), the effects of β on the interfacial tension
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Figure 10. (a) Snap-off time and (b) the radius of the bubble generated, as a function of β for
Ca∗ = 0.1 and Pe = 0.1, 1, 100.

forces are actually given by the normalized interfacial tension (1−βC)/(1−β), which
is the ratio of the interfacial tension forces to the initial uniform interfacial tension
forces on the bubble surface. The corresponding normalized interfacial tension forces
for the bubbles shown in figures 11, 12, and 6 are plotted in figures 13(a) to 13(c). It
is clear from these figures that although the variations in the surfactant concentration
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Figure 11. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration and (c) surface velocity, for Ca∗ = 0.1, Pe = 1, and β = 0.1, at times
0.15, 0.25, 0.3, 0.35, 0.4, and 0.696.
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Figure 12. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration and (c) surface velocity, for Ca∗ = 0.1, Pe = 1, and β = 0.7, at times
0.15, 0.25, 0.3, 0.35, 0.4, and 0.4865.
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Figure 13. Normalized interfacial tension forces γ/γs(1− βC) for Ca∗ = 0.1, Pe = 1, (a) β = 0.1, at
times 0.15, 0.25, 0.3, 0.35, 0.4, and 0.696; (b) β = 0.5, at times 0.15, 0.25, 0.3, 0.35, 0.4, and 0.502;
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Figure 14. (a) Snap-off time and (b) the radius of the bubble generated, as a function of Ca∗

for β = 0.1 and Pe = 100; β = 0.5 and Pe = 1; β = 0.7 and Pe = 0.1; and uniform surfactant
concentration β = 0.

increase as the value of β decreases, the corresponding variations in the normalized
interfacial tension forces on the bubble surface actually increase with increasing
β. Consequently, larger interfacial tension gradients exist for larger values of β as
the front of the bubble reaches the diverging section of the constriction and starts
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expanding. This leads to the acceleration of the snap-off process for larger values of
β. These computations were very sensitive to the number of grid points used and very
time consuming. Hence because of the possible large numerical errors, our results for
large β (beyond what is plotted) are inconclusive.

The effects of varying Ca∗ on the snap-off time and the radius of the bubble
generated are shown in figure 14 for different values of Pe and β. The case when
surfactant concentration remains uniformly distributed throughout the motion (β = 0)
is also included in these figures. From figure 14, we can see that the snap-off time
and the effective radius of the bubble generated decrease when surfactant is present.
We also see that the range of Ca∗ for which bubble snap-off is found increases
when surfactant is present. For the case of β = 0, bubble snap-off is observed when
0.09 6 Ca∗ 6 0.14. When surfactant transport takes place on the bubble surface,
snap-off is observed when 0.04 6 Ca∗ 6 0.14 for β = 0.1 and Pe = 100. This range
increases to 0.04 6 Ca∗ 6 0.18 for β = 0.5, Pe = 1 and for β = 0.7, Pe = 0.1. For
a fixed value of β and Péclet number, increasing the value of Ca∗ implies that the
viscous forces become important. This leads to increased deformations due to the
increased shearing forces on the bubble surface and hence decreases the snap-off time
and the effective radius br . This observation is consistent with the case of constant
surface tension (β = 0) studied in TM. In figures 15 and 16, we show the bubble
evolution, the corresponding surfactant concentration on the bubble surface and the
tangential surface velocity for Ca∗ equal to 0.04 and 0.18 (β = 0.5 and Pe = 1). The
case where Ca∗ = 0.1, β = 0.5, and Pe = 1 is shown in figure 6. We note that in
general, for the cases shown in figure 14, snap-off time and the effective radius appear
to be decreasing functions of Ca∗ although for the larger-Pe cases we see a slight
increase for the larger values of Ca∗. We also notice that in figure 16, the snap-off
point is shifted further downstream compared to the cases of smaller Ca∗. Examining
the surface velocity fields, we find that the magnitude of the normal velocity is similar
for the cases when Ca∗ = 0.1 and Ca∗ = 0.18 before snap-off occurs. However, as
the bubble is snapping off, the magnitude of the normal velocity for Ca∗ = 0.18 is
actually smaller than the Ca∗ = 0.1 case; this delays the occurrence of the snap-off
process and a larger bubble is generated.

5. Conclusions
The effects of surfactant on the dynamics of a liquid drop and gas bubble moving

in a straight or constricted capillary tube have been investigated numerically. We
find that if the normalized capillary number, Ca∗, is small enough, then steady-state
solutions are possible in a straight capillary tube. A similar conclusion holds for
small values of the parameter β. As either of these parameters increases, the drop
develops a re-entrant cavity at its rear forming a winged shape profile. Surfactant
is accumulated at the tips of these wings, which, in turn, increases ∂2C/∂s2, the
curvature and the surface velocity gradients there. Our computations end when these
variables become very large in magnitude. We find that the surfactant increases the
rate at which the re-entrant cavity enters the drop, and this rate is found to increase
with Péclet number for the cases we have studied. These computations imply several
possibilities for large Ca∗ or β. First a steady-state solution could still exist but the
values of the velocity gradients and the other parameters are so large that we are
not able to capture it well with our current numerical scheme. Second, as with the
uniform-surfactant case, a re-entrant cavity may be moving into the drop but again
the large values of the dependent variables limit our ability to tract the solution. Or
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Figure 15. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration and (c) surface velocity, for Ca∗ = 0.04, Pe = 1, and β = 0.5, at times
0.15, 0.25, 0.3, 0.35, 0.4, 0.5, and 0.6805.
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Figure 16. (a) Evolution of an initially spherical bubble with uniform surfactant concentration,
(b) surfactant concentration and (c) surface velocity, for Ca∗ = 0.18, Pe = 1, and β = 0.5, at times
0.15, 0.25, 0.3, 0.35, 0.4, and 0.466.
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third, it may be possible that with surfactants, one of the dependent variables or its
derivative becomes singular in finite time, which would require a reformulation of
the problem after the singularity is formed. Along with this is the possibility that the
surface tension tends to zero signalling the need for an improved equation of state.
There are other equations of state more realistic than the linear model presented here,
e.g. the Frumkin equation of state, but the linear model was chosen here since it is
simple and should have features similar to other models. Additional work is necessary
to precisely identify what is occurring in this straight tube drop motion problem. We
note that in all of our calculations, axisymmetry is assumed and this may be violated
in a real situation.

The effects of surfactant on the dynamics of a bubble in a constricted capillary
tube have been the main focus of this study. This is a very complicated free boundary
problem in which the bubble evolution is coupled to the distribution and evolution
of surfactant along the surface. Hence the dynamics is strongly coupled to the initial
bubble shape, location and surfactant distribution. Nevertheless, some trends have
been identified in how the parameters effects the snap-off time. For example, we find
that surfactant tends to decrease the snap-off time and decrease the size of the bubble
being snapped-off. In a situation similar to the evolution into steady solutions in the
straight tube, when snap-off is not observed, our computations end when the values of
the derivatives of the dependent variables become large at the rear of the bubble. For
the parameter ranges we have considered, the time scales for these two phenomena
appear to be distinct, hence we feel confident of our predictions of snap-off time (e.g.
figures 8, 10 or 14). Finally we note that our numerical simulations have given us
a better understanding of the effects of the different parameters on the dynamical
interplay between the surfactant distribution along the bubble surface and the bubble
dynamics.

This research was supported in part by Department of Energy grant DE-FG02-
88ER13927.
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